| 权衡财经
说到“算法”的应用,诺德基金小编最先想到的就是电商平台的“算法推荐”,每当打开购物APP时,“想买”的商品就已在首页呈现,仅凭我们在浏览商品时停留时间的长短,就可以对我们的“偏好”实现精准刻画,从而为我们提供更加个性化的购物体验。
而这样的“算法推荐”,也发生在各类互联网平台,从新闻终端到短视频平台,从出行应用到外卖平台,无处不见的个性化推荐正是AI算法的杰作,网络生活的很多场景都已被算法包围。
1、算法是什么?
在《算法导论》一书中曾解释为:“任何定义明确的计算步骤都可称为算法”。从纯技术的角度理解,只要是为实现某一目标而明确设定的一系列步骤或策略,都可以被称为算法。
自1956年人工智能诞生以来,人工智能算法一直在不断发展和突破。最初的基于逻辑推理的算法在面对复杂问题时面临困难,随着机器学习的兴起,人工智能算法开始采用统计方法,取得了在图像识别、语音识别和自然语言处理等任务上的重大突破。
然而,直到2011年深度学习算法的突破,人工智能技术才真正迎来了快速发展。深度学习算法通过多层神经网络模型和大规模数据训练,实现了更准确的预测和决策能力,这种方法在计算机视觉、自然语言处理等领域取得了突破性的成果,并推动了人工智能技术的发展。
那么,机器学习和深度学习两类方法有什么不同呢?接下来,就让诺德基金小编来给大伙一一介绍!
2、机器学习与深度学习有何区别?
我们先梳理下机器学习和深度学习之间的关系:简单来说,机器学习是人工智能中很重要的一个学科,而深度学习则是机器学习的一个分支。
机器学习实现的是让计算机通过大量的数据或以往的经验来学习,不断优化计算机程序的性能,实现分类或预测等功能。而深度学习是一种模仿人类大脑神经网络结构的机器学习方法,它可以从大量的数据中自动地提取特征和规律,并且不断地优化自己的性能。
深度学习和传统机器学习最重要的区别是前者的性能随着数据量的增加而增强。如果数据很少,深度学习算法性能并不好,这是因为深度学习算法需要通过大量数据才能很好地理解其中蕴含的模式,在这种情况下传统机器学习占据上风。
3、算法为何重要?
人工智能在60多年的发展过程中,经历了三次大起大落,回顾人工智能发展的三次浪潮,可以发现:每一次浪潮的发展都始于算法的突破。当前ChatGPT爆火,人工智能取得了前所未有的成功,这主要得益于深度学习算法的突破。
深度学习算法自2006年被提出后,通过快速发展解决了前两次人工智能浪潮中难以解决的问题。2016年,AlphaGo以4:1的战绩击败围棋职业九段选手李世石,标志着人工智能发展的重要里程碑。
而算法的突破,离不开算力和数据量的提升。算法的训练过程需要进行大量的矩阵运算,这就需要大量的算力和数据进行支持,只有在算力充足、数据量足够大且具有多样性的情况下,模型才能更好地学习各种特征和模式。这也侧面验证了人工智能的发展是一个综合性的工程,只有算力、算法和数据同时提升,才能推动人工智能技术的发展。
您必须 [ 登录 ] 才能发表留言!